ش | ی | د | س | چ | پ | ج |
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
This book is for people who need to solve ordinary differential equations (ODEs), both initial value problems (IVPs) and boundary value problems (BVPs) as well as delay differential equations (DDEs). These topics are usually taught in separate courses of length one semester each, but Solving ODEs with MATLAB provides a sound treatment of all three in about 250 pages. The chapters on each of these topics begin with a discussion of “the facts of life” for the problem, mainly by means of examples. Numerical methods for the problem are then developed
– but only the methods most widely used. Although the treatment of each method is brief and technical issues are minimized, the issues important in practice and for understanding the codes are discussed. Often solving a real problem is much more than just learning how to call a code. The last part of each chapter is a tutorial that shows how to solve problems by means of small but realistic examples
کتاب حل کردن مشکلات با استفاده از نرم افزار متلب (Solving ODEs with MATLAB)، مشتمل بر 4 فصل، 265 صفحه، با فرمت pdf، همراه با تصاویر، به زبان انگلیسی، به ترتیب زیر گردآوری شده است:
Chapter 2: Initial Value Problems
Chapter 3: Boundary Value Problems
Chapter 4: Delay Differential Equations
جهت دانلود کتاب حل کردن مشکلات با استفاده از نرم افزار متلب (Solving ODEs with MATLAB) برلینک زیر کلیک نمایید.
پیشرفت در جمع آوری و ذخیره داده در طول دهه های گذشته موجب انفجار داده در بیشتر موارد شده است. محققان در بسیاری از حیطه ها مانند مهندسی، ستاره شناسی، اقتصاد و تعاملات مصرف کننده، با مشاهدات و شبیه سازی بزرگ و بزرگتری روبه رو شده اند. چنین مجموعه داده ها در مقابل با مجموعه داده های کوچکتری که در گذشته مطالعه می شدند، چالش های جدیدتر در تحلیل داده ها به وجود آورده اند. به دلیل افزایش تعداد مشاهدات و از آن مهمتر به دلیل افزایش تعداد متغیرهای مربوط به هر مشاهده، روش های آماری قدیمی نسبتا درهم شکسته شد. مجموعه داده های با ابعاد زیاد چالش های ریاضیاتی زیادی همراه با فرصت های جدید به همراه داشتند. یکی از مسائل با مجموعه داده ابعاد بالا این است که در بسیاری از موارد همه متغیرهای اندازه گیری شده برای فهم موضوع موردنظر با اهمیت نیستند. کاهش بعد دسته بندی، تجسم، ارتباط و ذخیره داده با بعد بالا را تسهیل می بخشد. با وجود اینکه روش های جدید با هزینه محاسباتی بالا مدل های پیش بینی با دقت بالا از داده های با ابعاد بالا می سازند، هنوز هم در بسیاری از موارد تمایل به کاهش ابعاد داده اصلی به هر مدلی از داده است...
جزوه آموزش کاهش بعد با استفاده از شبکه های عصبی، مشتمل بر 22 صفحه، با فرمت PDF، تایپ شده، به زبان فارسی، به ترتیب زیر گردآوری شده است:
* توجه:
لازم به ذکر است که علاوه بر فایل جزوه آموزشی بالا، مقاله زیر نیز جهت دانلود قرار داده شده است:
جهت دانلود جزوه آموزش کاهش بعد با استفاده از شبکه های عصبی به انضمام مقاله، برلینک زیر کلیک نمایید.